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SIMULTANEOUS STRESS RELAXATION IN TENSION AND CREEP

IN TORSION OF 2618 ALUMINUM AT ELEVATED TEMPERATURE |

by

James S. Lai and William N. Findley
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t Abstract

Experiments are reported for stress relaxation and simultaneous
stress relaxation and creep with proportional and non proportional loading
and unloading. Results were compared with predictions of a viscous-

viscoelastic theory, and modifications, and strain hardening. Predictions

were calculated from results of combined constant-stress tension and

torsion creep and recovery tests only, which were reported previously.
Results showed that a modified viscous-viscoelastic theory predicted

all the observed features and predicted the creep and relaxation rates

reasonably well.
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Introduction

The literature on the time-dependent bhehavior of metals at elevated
temperature, mostly deals with creep under uniaxial stress states. Next
most numerous are perhaps the works on stress relaxation under simple
stress states and least numerous creep under multi-axial stress states. A few
have also considered predicting stress relaxation behavior from creep
under the same stress state (mostly uniaxial tension). Selected references
to the previous investigations of time-dependent behavior of metals under
multiaxial stress are given in [1] and {2]. No prior work on simultaneous
creep and stress relaxation of metals has been found in the literature.

The only investigation of simultancous creep and relaxation was performed
by the authors [3,4] on full density polyurethane.

In previous papers [1,5,6] the authors investigated the creep behavior
of 2618 Aluminum at 200°C (392°F) under combined tension and torsion stresses.
In the first paper the authors developed constitutive equations to describe
the creep behavior of the material under multi-axial stress states. The
constitutive equations employed five strain components: linear elastic ee;
time-independent plastic ep; time-dependent positive nonrecoverable E;os
and time-dcpendent negative nonrecoverable ezcg; time-dependent recoverable
¢'®. From creep and recovery experiments under combined tension and torsion,
the time and stress dependence of these components were evaluated [1] for
constant stress. In [5,6] the constitutive relations developed for a constant

stress state were extended for time-dependent stress histories. The extended

constitutive equations werec used to predict the creep behavior of the material

for combined tension and torsion and under varying stress history, including
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step-up and step-down stress changes and repeated reversal of shearing
stress with and without constant tension. Paper [5] dealt with simple
stress states while paper [6] dealt with combined tension and torsion
stress states.

In the present paper, experiments involving simultaneous stress
relaxation in tension and creep in torsion are reported and discussed.
These experiments were performed on the same lot of 2618 aluminum as the
experiments in [1,5,6]. Methods of predicting simultaneous creep in
torsion and stress relaxation in tension from the constitutive equations
developed in papers [1,5,6] are presented in the present paper. Predic-
tions of stress relaxation and creep under combined tension and torsion
stress states using the proposed methods were computed and compared with

the experimental results.

Test Material

An aluminum forging alloy 2618-T61 was employed in these experiments.
Specimens were taken from the same lot of 63.5 mm (2-1/2 in.) diameter forged
rod as used in [1,5,6] and the same lot as specimen D through H in [71.
Specimens were thin-walled tubes having outside diameter, wall thickness
and gage length of 25.4, 1.52 and 101.6 mm (1.00, 0.060, and 4.00 irches),
respectively. A morce complete description of material and specimen is given

in (1].
Experimental Apparatus and Procedure

The combined tension and torsion creep machine, Fig. 1, used for the

experiments was described in [8] und briefly in [1}. Tension was applied by

means of dead weights through lever A, Fig. 1. A system of counter balances

2o bar
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permitted torque in either sense to be applied by adding or removing weight

from lever B. The tensile strain was monitored by using an extensometer, C,
Fig. 1, attached to the upper and lower gage points of the test specimen.

The sensitivity was 1 x 10—6 for tensile strain. Shear strain was measured
by a mechanical device, employing a microscopec D, Fig. 1, whose sensitivity
was 1.5 x 10_6 for tensor shear strain. During a stress relaxation test,

the tensile strain was maintained constant by means of a servomechanisn

whose input was the difference between the voltage generated from the command
signal (desired strain level) and that from the actual strain response. The
output from the servo-controller drove a servo-valve, E, Fig. 1, which
controlled the flow of hydraulic fluia from the pump to the hydraulic cylinder,
F, Fig. 1. This cylinder was connected in series with a load cell, G, Fig. 1,
and used to apply the load to the test specimen through a hooked rod to a
loading lever, A, Fig. 1. The load applied to the specimen was measured by

the load cell to a sensitivity of 9 g (0.02 pound).

The specimen, H, Fig. 1, was heated internally by a quartz-tuhe
radiant-heating lamp and extcrnally by two resistance hecaters at the ends
just outside the gage length. The details of temperature control for the
cxperiment were describted in [1,7]. Measurements made during the experi-
ments indicated a temperature variation of #0.6°C (*#1°F) both with time
and with position along the gage length of the specimen.

After the set-up, the specimen was soaked at the test temperature of
200°C for approximately 18 hr. prior to testing. The influence of aging
on the experimental results, as discussed in [1,5], indicated that during
the testing time of the experiments reported the creep rate increased

about 1/2 percent per hr., which is considecred negligible.
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Experimental Results

The results of four combined tension relaxation and torsion creep
experiments are shown in Figs. 2 to 5 respectively. The loading and
straining programs for each test are shown in inserts on each figure.

In Fig. 2A a constant tensile strain was maintained in period 1 and

a typical stress relaxation curve was observed. In periods 2 and 3, Fig. 2,

a constant torque was added and removed while the tensile strain was kept
constant. In period 2, Fig. 2A, a new primary-type relaxation occurred.
The rate of the stress relaxation continued unchanged into period 3 upon
removal of the torque. In Fig. 2B, the usual shape of creep and recovery
behavior werc observed for the shear strain for period 2 and 3. In the
fourth period, Fig. 2, the tensile stress (not the strain) became zcro.
The reason that the specimen did not recover at zero strain was that the
testing machine was not designed to take a compressive force. If the
specimen were to recover at zero tensile strain a compressive force would
have been required.

The experiment in Fig. 3 involved simultaneously applying constant
strain in tension and constant shearing stress in torsion in the first
period. Stress relaxation in tension and crecep in torsion were observed
as shown in Fig. 3A and 3B respectively. In the second period, Fig. 3,
the shearing stress was increased about 10 percent while the tensile
strain remained constant. The results shown indicate that both the stress
relaxation and creep behaviors in period 2 continued without significant
change in character from the first period. In period 3, the tensile strain

was kept cunstant while the shearing stress was removed. The rate of
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stress relaxation in period 3 Fig. 3A continued essentially unchanged from
that in period 2. The usual recovery of the shear strain in period 3 Fig. 3B
was observed. In the subsequent periods, a constant shearing stress was
repeatedly added and remored three times while the tensile strain was kept
constant. In Fig. 3A, periods 4, 6, and 8, (when the shearing stress was
on), the stress relaxation behaved as if the shear stress were on continuously
from period 4 to 8 (not influenced by the intervals of unloading). Period 5
showed a continued relaxation while period 7 showed a rebound in stress.
Other instances of rebound occurred in periods 3 and 5, Fig. 4A. In Fig. 3B,
the successive loadings in periods 4, 6, and 8 resulted in decreasing creep
rates. In periods 5 and 7, recovery was observed.

In Fig. 4 the first three periods are similar to those of Fig. 2A except
for a higher tensile strain (0.29%). The resp nses of the first three

periods in this test were very similar to those shown in Fig. 2. In periods

4 and 5, a constant shearing stress (grcater than the shcaring stress in
period 2) was added and removed. A rapid stress relaxation was ohserved in
period 4, Fig. 4A, while a small increase in stress was observed in periods
3 and 5. The results in period 4 of Fig. 4A and periods 4, 6, and 8 of
Fig. 3A indicate that upon reloading in torsion to a higher value while
keeping the tensile strain constant, a rapid tensile stress relaxation
resulted. On the other hand, if the reloading oé torsion was to the same
magnitude, the rate of tensilc stress rclaxation continued as if the shear
stress was uninterrupted. In Fig. 4B, periods 4 and 5 characteristic

creep and recovery behavior were observed.
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Fig. 5 involved simultaneously applying constant tensile strain and
shearing stress in period 1. In period 2 the tensile stress was removed
while the shearing stress was kept constant. This was followed by removal
of shearing stress in period 3. Characteristic stress relaxation in tension
and creep in torsion were observed in period 1. In period 2, Fig. 5B upon
removal of tensile 'stress," the creep in torsion was continued as if no
removal of tensile '"stress' had occurred. In period 3, Fig. 5B, a recovery
in shear strain was observed. In periods 2 and 3 Fig. 5A the stress was
reduced to zero rather than the strain being reduced to zero. Thus no
further stress relaxation occurred. Instead a '"creep' recovery occurred
at zero stress which is not shown.

In the following sections the constitutive cquations developed in
[1,5,6] for creep behavior of the same material are presented and used to

predict the stress relaxation and creep hehaviors shown above.

Discussion of Experimental Results;

Comparison with Combined Stress Creep

A comparison of the results of the present experiments on histories of
variable simultanecous relaxation in tension and creep in torsion shows
similar features to those found in variable combined tension and torsion
creep [6]. Among these similar featurcs are the following: (a) When a
shearing stress T was added to a tensile relaxation at a constant tensile
strain €11 @ new "primary" type stress relaxation resulted as in period 2
Fig. 2A, and periods 2 and 4 Fig. 4A. (b) When the shearing stress t was
removed to zero while the tensile strain €11 remained constant there was

no significant change in the pattern of stress relaxation in tension as

shown in period 3 Fig. 2A. Similar but not as well defined behavior is
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also shown in period 3 Fig. 3A, and periods 3 and 5 Fig. 4A. (c) When the
tensile stress o was changed to zero during tensile relaxation while the

shearing stress remained constant the creep e continued as though there

12
had been no change. Sece period 2 Fig. 5B. (d) When the tensile stress
was changed to zero following constant strain relaxation while the shearing
strain €)p Was recovering from prior crecp at a shearing stress T a new

recovery type bchavior was initiated in e ., as shown in period 4 Fig. 2B.

12

Constitutive Equations for Creep Under

Combined Tension and Torsion

In the previous papers [1,5,6] it was shown that creep of specimens of
the same lot of 2618 Aluminum at 200°C under combined tension and torsion

were adequately described by the following relation:

e p v ve
.. =g.. + .. +¢.. + Ee.. 1
elJ(t) Eij * €ij €1J(t) elJ(t) , (1)
e v ve . . . . .
where eij’ eij’ and eij represent the time-independent elastic strain, time-

dependent nonrecoverable (viscous) strain and time-dependent recoverable
(viscoeclastic) strain, respectively, and gzj was further resolved into
positive and negative components. The time-independent plastic strain

ggj was found to be zero in the experiments. The elastic modulus Eo, shear
modulus Go and Poisson's Ratio v for the elastic strain component e€ for

the material at 200°C as reported in [1,5,6] is given in Table 1. The
constitutive relations for ezj(t) and e¥§(t) under constant stresses and
time-dependent stresses as employed in [1,5,6] are reviewed in the following.

N A




Constant Stress

\ ve .
Under constant stress, the components ¢ and ¢ = under combined

tension ¢ and torsion t were represented by the following equations:

ve s - Ry k1ot ety 1" 5
e11(t) = (o F llo-0"),(r-t)]t" (2)
ve R . n
£12(t) = ) 6 [(o-0"), (z-1)]t , (3)
v oo 1 o n
ell(t) - (-l"'R) F [(0'0’),(T T )]t » (4)
v ] n :
e15(t) = (350 © ((o-0"), (x-1")]t . (5) |
;
The nonlinear functions of F and G in (2-5) were derived from a third
order multiple integral representation [4], where :
. 2 3 i
Flo-o',t-1') = Fy(@-0') + Fy(0-0")" + F {o-0") :
) ) (6)
* Fyloo")(r-t")" + Felr-1") s
Gl-0',1-1t') = GI(T’T') + GZ(T—T’)3 + Gs(o-c’)(r-r')
) )
+ Gylo-a') (x-t") |
and o', tv' are the components of the creep limit. In the original forru-
lation [1], a Tresca form, as shown in the following, was employed for
the creep limits (o' and 1') under combined tension-torsion stresses,
2 2 2 2
(6")” + 4(x")" = (o%)" = (2t*)" ,
()

g'fo=1"/T ,
where o* and t* arc the creep limits under pure tension and pure torsion
respectively. The coefficients of Fi’ Gi’ and values of o*, t*, R and n
were derived from constant combined tension-torsion creep and recovery tests

reported in {1] and shown in Table I. The values of the coefficients corres-

ponding to (6-8) were given in [1] and corrected in [§5].




It was shown in [6] that using the variable creep limits o', t' and (8)

did not predict the experimental results quite as accurately as using fixed
creep limits o* and t*. In the present paper, calculations were made using
the fixed creep limits, o* and t*, as well as o', t'. The calculations of

the predicted creep and relaxation curves shown in Fig. 2-5 are for o', T'

Similar calculations made for the fixed creep limits o*, t* are not shown.

The results were somewhat better for o', ' than o*, t* and ;}e more

generally applicable.

Time-Dependent Stress

The modified superposition principle (MSP) as derived from the multiple
integral representation was shown in [3.4] to be able to describe time-
dependent recoverable (viscoelastic) strain. Under a continuously varying
stress o, the strain response e'® given by the modified superposition

principle was represented for nonlinear behavior in [5,6] by

t
ve _ - -~ - R ¢
eij(t) -J 50 () fij[o(F,),T(C),t £lo(g) dg , (9
(o]

where fij(o,t) represents the nonlinear-stress and time-dependent creep

function such as (2) and (3) for EY?

g(t) =g(t) -g' and T{t) =t(t) - t'. For a series of m step changes in

ve .
and €15 respectively, and where

. ve
stress as employed in the present work, (9) becomes as follows for €12 for

example:
R - - n
£12(t) = ({6E, TP (e-t "] +

MCICRETTRIS I [CE NP R CR N (92)

n

IS S <

* b(cm'Tm)(t—tm m-1

-1
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For the time-dependent nonrccoverable (viscous) strain component ¢ ,
it was shown in [5,6] that a strain hardening thecry reasonably described
the behavior of this strain component under a time-dependent stress input.
. . ve ve
The strain-hardening theory for €11 and €), can be represented by the

following equations:
n

MCE )TN

n

el (1) = Gla@),T@n /el . (11)

1

Equations (10) and (11) were derived from (4) and (5), respectively,
using the strain-hardening concept as described in [1,5].
For a series of m step changes in stress, as employed in the present

paper, (11) for example becomes as follows:

eV, (1) = (e {I6GELTPIY ) + oo+ (66,7, )]

m-1 tm~2)
(12)

l/n(t
66T e, "

Viscous-Viscoelastic (VV) Theory

The total strain following a time-dependent stress history was found
according to (1) by adding to the elastic strain corresponding to the
stresses existing at the time of interest the e'C given by (9) and the e’
given by (10) or (11) for axial strain or shear strain. Thus,

1 n

e (0 = F * iR j I RIGIRAT:

t
R ] - — .
+ I;ﬁ'f gajtj‘klﬂ(ﬁ),T(E), t-§]o(£)dg ,

o
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_1 1 o = 1/n "
Nl | RGO I OIRART
(13b)
t
+ -“—J 2 Gla(£),T (), t-E]T(E) dE
1+R | 30(&) : ’ !
o}

where FE and G are the elastic modulus and shear modulus respectively.

Modified Viscous-Viscoelastic (MVV) Theory

In [5,6] it was found under partial unloading that the observed charac-
teristics of creep behavior of the material were not properly predicted by
the VV theory. It was found, however, that the MVV theory employed ir [5]
described the creep behavior of the material under partial unloading more
closely than the VV theory. In the following, the MVV theory, which will be
used also in this paper, is reviewed. The basic difference hetwecen the MVV
and the VV theories is in the treatment of the creep limits for the recov-
erable strain €'C. These differences in treatment are illustrated in Fig. 6.

{(A) For the nonrecoverable strain component, the strain hardening rule

was cmployed. Upon reduction of stress from Sp to a current stress Ops

Fig. 6(a), the strain rate ¢’ continued at the reduced (positive) rate
prescribed by the strain hardening rule, (10) and (11), as shown in Fig. 6(a),

unless the current stress S equaled or was less than the crcep limit o*

(or o'). When GC < o* (or o'), év was zero as prescribed by (10) and (11},
see Fig. 6(a).

(B) Upon reloading from a stress O below to a stress S above the crecep

L . v :
limit, the nonrecoverable strain rate € resumed at the rate prescribed by

< o*
C

(10) and (11) but as though there had been no interval tx for which o

(or o'}, see Fig. 6(c).




' . v . .
1 (C) For the recoverable strain component ¢ ¢ on partial unloading the
. cve . .
recoverable strain ratec ¢ became and remained zero for all reductions of

stress from %A to Ops as shown in Fig. 6(b) unless the total change in stress

from the highest stress W [zo, in Fig. 6(b)] previously encountered to the

A

current stress 9 equaled in magnitude the creep limit o* (or o'). That is,

ax

¢V® = 0 when (oA-aB < |o*] (or o) , (14)

¢V® £ 0 when (cA—oC) > |o*| (or 6') . (15)

Equation (14) can be considered as meaning that for a small unloading the
recoverable strain component was ''frozen.'" Equation (15) indicates that if
the change in stress was greater than |o*| or |o'| then recovery would occur

followed eventually by creep, see Fig. 6(b).
(D) Upon increasing the stress to o (oD > OA) followine a period tx

Ve

(a dead zone) for which (o ) ¢ lo*l (or ') and 7 = 0, as discussed in

max B
(C) above, the recoverable strain component ¢'® continued to creep in accordance
with the viscoelastic behavior (9) as though the period tx never occurred, see
Fig. 6(c). In computing the behavior for situations described in (B), (C) and
(D) it was thus necessary to introduce a time shift inequations (9), (10) or
(11) to eliminate the appropriate period tx when €'€ was "frozen." Thus, the

new time t' subsequent to a period t, = (th-ta) becomes t' = t - (tb-ta),

where t is the real time and ta’ tb are the times whonoA was removed and OD

was applied.

(F) When recoverable and nonrecoverable strain components are considered

together two special circumstances arisc. Consider that the stress decrcases

from the highest value In to a lower value %, under a uniaxial stress state. ,

. . v
If g 2g* and g* ¢ ap € (c\-o*) then therc is creep occurring from ¢ and
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< g* then there is

ve .
recovery from ¢ . However, if o, < 2a* and (oA-o*) <ag

B

. v sve
neither creep nor recovery, € = ¢ = 0.

(F) When one stress component decreascd while the other remained constant

the recoverable strain component e’® was treated as follows. The material
behavior in such situations suggested that reducing or removing one stress
component, say 1, while the other component, say o, remained constant affected
the strain as follows. The strain corresponding to mixed stress components

behaved as though these mixed components had suffered a small stress reduction.
That is, the strain, say €11° associated with the mixed stress components, say

2

2 . . .
ot , T , became constant. The strain, say ¢ associated with the pure stress

11’
2 . . .
terms, say o, 0o , 03 which were unchanged, continued as though nothing had

happened.

Strain-Hardening (SH) Theory

The total strain under this theory can be represented by the following

equations according to (10) and (11)

—t Wn
en® = 22 || eEm ey el (16)
i ]
rt —
e (t) = B, J GFE) Y™ e (17)
12 26 ! 200 '
B ]

Prediction of Simultaneous Creep in Torsion and Relaxation in Tension From

Combined Stress Creep Dlata

Since crecp and stress rclaxation behaviors are two aspects of time-
dependent behavior of materials, onc behavior should be predictable if the
other behavior is known. 1In other words, in a "tensile stress relaxation”
test for example, the stress response of a material under a constant axial

strain input may be considered as equivalent to a tensile 'creep" test
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with an undctermined time-dependent stress applied to the specimen such
that a constant axial strain results throughout the testing period. The
prediction of simultancous creep and relaxation from combined stress creep
to be described in the following is based on this prenmise.

Some investipators have considered a relaxation test to be fundamentally
different from a crecep test - that the material has a constant strain state
in relaxation compared to a changing strain state in creep. lHowever, the
strain state is not con<tant durine a relaxation test. In an axial relaxation
test only the axial strain component remains constant while the transverse
strains are time dependent [4] unless the relaxation is volume constant, which
is not truc in general. On the other hand, in a constant-stress creep test

all stress components are constant.

The simultaneous stress relaxation in tension and creep in torsion
when the specimen is subjected to constant tensile strain and constant
shearing stress in torsion can be considered as one of combined tension
and torsion creep with variable (time-dcpendent) tensile stress and con-
stant shearing stress in torsion. The desired time-dependent tensile
stress o(t) is unknown. This unknown stress o(t) has to siatisfy the

condition that the tensile strain produced by the prescribed constant

shearing stress and this unknown varying tensile stress o(t) acting topether
on the specimen nust equal the prescribed constant tensile strain. For the
VV theory this is equivalent to solving the nonlinecar eguation (13a) for

o(t) with €1 and t(t) prescribed. Once o(t) has been determined from (13a),

the corresponding shearing strain can he obtained from (13b).

The iterative procedures uscd to solve for o(t) from (13a) for the \V

theor: with prescribed tensile strain cll(t) and shearing stress t(t) are




described in the following. According to this numerical procedure, the

prescribed cll(t) and t(t) were divided into a number k of intervals of tiue
(m=1,...K). In the first step the ell(l) and t(1) were known. Neglecting
the time-dependent responses, the initial tensile stress S(1) = ell(l) E  was
determined. With S(1) and t(1l) for the first step, the S(tl) and r(tl) at
the end of the first interval were computed from (13a). Similarly with S(tm-l)
at the end of the m-1 interval the S(tm) and r(tm) were determined from (13a)
using the entire stress history fromt = 0 to t = tm. The difference between
the computed tensile strain and the prescribed tensile strain for the mth
interval, Ac(tm) = c(tm) - cll(tm) was conmputed. cll(tm) represented the
prescribed tensile strain at t = tm. The Ae(tm) was used to detcrmine the
correction for the assumed tensile stress S(tm). Thus, the corrected tensile
stress c(tm) cquals [S(tm) - Ac(tm)] F . The correction was based on the
elastic response only. c(tm) so determined represented the rclaxation stress
at o=t This corrected tensile stress history o(t) and the prescribed
shearing stress history 1(t) for t = 0 » tm were used to compute the shearing
strain using (13b) for the \V theory.

In the next step (t = tm*l)' the approximate tensile stress S(t”‘l)

was determined by S(tm4l) = ﬂ(tm) + [cll(t l) - ell(tm)] F . For a con-

m+

stant strain rclaxation condition, ¢ 1) = Cll(tm)' thus, S(t ) =

H(tnw m+}

q(tm). The S(tm } alony with the previous tensile stress history a(t),

+1

and the shearing stress history t(t) for t from 0 to t . were used again

+1

to compute the tensile strain response o(tm ) using (13a). TFrom that

+]
the relaxational stress at t = tmol wias determined.
When using the 'V theory the procedure was almost identical to that

described above excent the modifications (C), (M), and (F) described in

the preceeding section were properly incorporated. For example, when
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predicting the relaxational stress in periods 1, 2 and 3 of the test program
shown in Fig. 2A, the third term (EYT) on the right side of (13a) became

zero, because a stress relaxation can bhe considered as a small partial

|
[en]

unloading in a creep test, thus according to (C) of the MVV theory, éve =
For predicting elz(t) of periods 2 and 3 of the test program shown in Fig.
2A, the G(E};) function in the third tcerm of the right side of (13h) con-
tained two terms Gl? and Gz?z instead of four terms as shown in (7)),
according to (F) of the MVV thcory.

When using the SH theory for the predictions, equations (13a) and (13h)
used in the VV theory were replaced by (16) and (17), respectively.

The procedures descrited above were employed to calculate the response
of the simultaneous stress relaxation in tension and creep in torsion of
2618 aluminum at 200°C for the histories shown in Fig. 2-5. In using these
procedurcs it was found that the time interval selected could affect the
numerical accuracy. A sensitivity analysis was conducted to determine the
affect of time interval on the accuracy of the numerical computations. It
was found that close to the region where the ell(t) changed abruptly a time
interval grecater than 0.001 hr. could significantly affect the accuracy of

the predictions. (onscquently in all the predictions carried out in this

rrogram, the time interval was chosen to be 0.001 hr.

Comparison of Predictions with Fxperimental Results

Creep: As shown in Fig. 2B, 3B, 4B, and 5B, the prediction of the shearing

creep componcent (strain 512) for the first application for shear stress t
comparcd well with the test data. This was truc for all three theories.
As noted before these predictions were based on the numerical constants

determined entircly from crecp and recovery tests under constant combined




tension and torsion and given in Table 1. All of these experiments in

Fig. 2-5 included relaxation in tension simultaneously with the shearing
creep. In Fig. 3B and SR the creep and relaxation started simultancously,
while in Fig. 2B and 4B the rclaxation started before the shearing stress
was added.

For subsequent periods the shearing strain was reasonably well pre-
dicted by cither the VV or MVV theories, but not properly predicted by the
SH theory when the shearing stress was removed. The MVV theory was lower
than the VV theory when tensile relaxation preceeded the torsion creep.

No prediction was made for periods 4 Fig. 2B or periods 2 and 3 Fig. 5B

because the recovery of €)1 %as at constant stress rather than constant

strain. The creep in period 4 Fig. 4B was not well predicted. This is
consistent with the observation for combined stress creep under multiple
stress changes at high stresses [6], that the predicted creep rate was too
low.

Relaxation: Figures 2A, 3A, 4A and 5A show that the prediction of the
magnitude of the tensile relaxation for the first two periods compared
with the test data about as well as the comparison for the creep component
of the same tests. The best comparison of magnitudes was found with the

VV theory (the SH theory was usually nearly the same).

In Fig. 3A and SA the stress relaxation and creep started simultaneously.

In Fig. 2A and 4A the creep (shear stress t) started one hour after the
start of relaxation. In this case the predicted relaxation rate was some-
what greater than observed and not as close to the test data as in Fig. 3A
and SA.

When the torque was removed while the tensile strain remained constant,

the VV theory predicted a reversal of the relaxation which was not obscrved,
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sce period 3 Fig. 2A, periods 3, 5 and 7 Fig. 3A and periods 3 and 5 Fig. 4A.
This was due to the same feature of the thcory that caused a prediction of
recovery that was not observed in combined tension-torsion creep when one
component went to zero. The reversal of relaxation predicted by the VV
theory was due to the fact that, upon removal of torque, the last two terms
in (6) vanish, This caused a sudden drop in the tensile strain rate. In

order to maintain the constant strain imposed by the test program, the

tensile stress had to increasc accordingly. The SH theory predicted no
change in stress and the MVV theory predicted a small decreasing stress
but not as much as observed in period 3 Fig. 2A for example.
Gencral: The MWV theory predicted the character of all of the various
features of the test results for both the creep and relaxation components.
On the other hand the VW theory predicted a trend opposite to that oliserved
during relaxation when the shearing stress was removed while the tensile
strain remained constant. The SH theory failed to predict the observed E
recovery when the shearing stress went to zero.

Comparing the magnitudes of creep strains or rclaxation stresses

predicted with the observed values shows that the MVV  theory usually

predicted hicher stresses in relaxation and higher strains in creep than

the observed values and gencrally higher values than predicted by the VV
and SH theories.

fiowever, if comparison is made on the hasis of time dependence alone,
that is on the basis of crcep or relaxation rate, it may be shown that in
rencral the prediction of the MVV  theory is the best. The MYV theory
wias hest ar the same in this respect as the VW theory in the following:
Fig., 2. Fiz. 3 (except Fig, 3A period 4); Fig. 4 (except Fig. 4A period 4,

Fig. 4B period 4) and Fig. 5.




All curves shown in Fig. 2-5 employed variable creep limits o', ' (8).

The use of fixed values of ¢o* and t* for creep limits yielded differences
which were sometimes improvements and sometimes not. Since fixed values of
o*, t* lose their meaning for stress states in which one component is below
the creep limit the results for fixed creep limits are not shown in the

Figures.

Conclusions

Results of experiments on simultanecous creep in torsion and relaxation
in tensions were presented. These included proportional and non-proportional
loading, unloading and reloading. In general the features of the material
response were similar to those observed under combined tension and torsion
creep.

Three theories were used to predict the material response to the
several mixed load-constraint histories tested. These predictions were
made using the results of constant load creep and recovery experiments under
combined tension and torsion only. Results showed that a modified viscous-
viscoelastic (MVV) theory predicted all the observed features and in general
had the best prediction of creep and relaxation rates.
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Table I. Constants for Equations (2) through (13) Using o' , 1'

+ + +
for F4 R GS and G4

FI = 6.084 x
F; = -7.431 x
F; = 7.596 x

o* = 9.143 x
= 7,170 x
= 2,703 x

™ = 4,571 x

10712, per Pa-h" (0.004195, % per ksi-h™)

1072%, per Pa®-n™ (-0.0003533, % per ksi’-h™)

10728, per Pa®-n™ (0.0000249, % per ksi3-h®)

107, Pa (13.26, ksi)

10722, per Pa-h" (0.004944, % per ksi-h")

10'28, per pa>-n" (0.00000886, % per ksis-hn)

107, Pa (6.630, ksi)

Fy = 1.0491 x 10728, per Pa>-h™ (0.000003439, % per ksi’-h")
+

F5=0
Gy = -4.020 x 1072, per pa’-h" (-0.0001911, % per ksi’-n™)
Gy = 9.222 x 1072, per pa’-h" (0.00003023, % per ksi’-h™)
Note: n = 0.270

R = 0.55

E = 6.5 x 10%Pa (9.43 x 10° psi)

6 = 2.45 x 10%wpa (3.57 x 10° psi)

v = 0.321

it
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Figure Captions

Apparatus for Simultancous Stress Relaxation in Tension and

Creep in Torsion.

2A Stress Relaxation in Tension with and without Added Torsion.

T, = 79.63 “Pa (11.55 ksi)

1

2B Creep in Torsion During Stress Relaxation in Tension.

Ty < 79.03 MPa (11.55 ksi)

3A Stress Relaxation in Tension Simultaneously with a Program of

Creep in Torsion.

T, = 55.50 MPa (8.U5 ksi)

T; = 6l.01 MPa (8.85 ksi)
Tz = 79.05 MPa (11.55 ksi)
3B Creep in Torsion During Stress Relaxation in Tension.
T, = 55.50 MPa (8.05 ksi) | ?
T, = 61.01 MPa (8.55 ksi)
r; = 79.63 MPa (11.55 ksi)

4A Stress Relaxation in Tension with Periods of Added Torsion.

T, = 79.63 MPa (11.55 ksi)

T, = 95.55 MPa (13.86 ksi)

4B Crcep in Torsion During Stress Relaxation in Tension.

T = 79.63 MPa (11.55 ksi)

T, = 95.55 Pa (13.86 ksi) .

5A Stress Relaxation in Tension Simultaneously with Creep in Torsion.

T, = 79.63 MPa (11.55 ksi)

5B Crecp in Torsion Simultancously with Stress Relaxation in Tension.

6

T = 79.63 'MPa (11.55 ksi)

I1lustration of the Role of the Creep Limit in Partial Unloading

and Reloading.
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